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The incompressible, viscous #ow over two-dimensional elliptic airfoils oscillating in pitch at
large angles of attack, such that #ow separation occurs, has been simulated numerically for
a Reynolds number of 3000. A vortex method is used to solve the two-dimensional
Navier}Stokes equations in vorticity/stream-function form using a time-marching approach.
Using an operator-splitting method the convection and di!usion equations are solved sequen-
tially at each time step. The convection equation is solved using a vortex-in-cell method, and the
di!usion equation using a second-order ADI "nite-di!erence scheme. Elliptic pro"les are
obtained by mapping a circle in a computational domain into the physical domain using
a Joukowski transformation. The e!ects of several parameters on the #ow "eld are considered,
such as: frequency of oscillation, mean angle of attack, location of pitch-axis and the thickness
ratio of the ellipse. The results obtained are shown to compare favourably with available
experimental results. ( 2000 Academic Press
1. INTRODUCTION

An elliptic geometry represents a general con"guration allowing the realization of a wide
range of cross-sections, from a circular cylinder to a #at plate. Depending on the thickness
ratio and the angle of attack of the ellipse, its #ow "eld may show some characteristics of
blu!-body #ow, such as a circular cylinder in cross-#ow, or those of the #ow over
a streamlined body, such as an airfoil. At low angles of attack the #ow over slim elliptic
cylinders generally remains attached to the body surface, and the ellipse behaves in a similar
manner to a conventional airfoil. On the other hand, at high angles of attack, or for ellipses
with high thickness ratios, the #ow separates from a considerable portion of the surface, and
a blu!-body #ow regime is observed.

The study of elliptic cylinders in cross-#ow has been the subject of several numerical
and experimental investigations. For example, using a "nite-di!erence scheme, Lugt &
Haussling (1974) studied the impulsively started #ow over an elliptic cylinder. A 10% thick
elliptic cylinder at Re"200 was considered with an angle of attack of 453, where the ellipse
behaved as a blu! body. A separated #ow regime, along with periodic vortex shedding from
the ellipse was observed, producing a KaH rmaH n vortex street in the wake. Chou & Huang
(1996) also studied the impulsively started unsteady #ow around elliptic cylinders with
di!erent thickness ratios at very high angles of attack (a"603, 903), and at Reynolds
numbers of up to 1000. They used a semi-implicit "nite-di!erence scheme to solve the
Navier}Stokes equations in terms of vorticity and stream-function. For a 10% thick ellipse
at a"903 and Re"1000 the formation of a secondary eddy, as usually obtained for
a circular cylinder in cross-#ow, was not observed during the early stages of the #ow. They
0889}9746/00/080757#21 $35.00/0 ( 2000 Academic Press
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reported that the growth of the main eddy was much faster than that behind a circular
cylinder. Mittal & Balachandar (1996) developed a spectral collocation technique to
simulate the three-dimensional incompressible #ow over elliptic cylinders in the Reynolds
number range of 180}1000. They observed that, in general, the 2-D simulations predicted
a higher mean drag compared to the corresponding 3-D simulations. However, they
reported that for Reynolds numbers where the #ow is known to be intrinsically three-
dimensional the 2-D simulations estimated the drag more accurately for streamlined bodies
than for blu! bodies.

Nair & Sengupta (1996) numerically investigated the onset of asymmetry over elliptic
cylinders, with di!erent thickness ratios, in an impulsively started #ow at a Reynolds
number of 104. They used a "nite-di!erence scheme to solve the Navier}Stokes equations in
the stream-function/vorticity form. The asymmetry started to develop at earlier times for
the ellipses compared to a circular cylinder. However, the asymmetry developed at a faster
rate for a thicker ellipse. They linked the onset of asymmetry around an object to the
streamline curvature near the trailing edge. Nair & Sengupta (1997) also investigated the
early stages of a two-dimensional #ow past elliptic cylinders at constant angles of attack.
For a 10% thick ellipse, at Re"3000 and a"303, a very vortical and separated #ow
structure was predicted shortly after the impulsive start of the #ow. For angles of attack of
a"10 and 123, separated #ows were also predicted over the same ellipse, although the
#ow separated at later times compared to the case with a"303. It was noted that for the
10% thick elliptic cylinder the #ow "eld behaved very much like that over a conventional
airfoil

A number of experimental investigations of the #ow over elliptic cylinders have also been
performed. For example, Modi & Wiland (1970) studied the #uctuating loading and vortex
shedding frequency, and Modi & Dikshit (1975) studied the near-wake aerodynamics and
wake geometry for static elliptic cylinders as a function of thickness ratio and angle of
attack in the subcritical Reynolds number range. Surface pressure measurements were
reported by Ota et al. (1985) for an elliptic cylinder of axis ratio 1 : 3 in the critical Reynolds
number range.

Ohmi et al. (1990) used both #ow visualization and numerical calculations to study the
early stages of an impulsively started #ow, with Re"1500 to 104, over a 10% thick,
pitching elliptic cylinder. It was observed that the dominant parameter a!ecting the results
was the reduced frequency of oscillation f *,f c/;

=
(where f, c, and;

=
are the frequency of

oscillation, the chord length, and the upstream velocity, respectively). For f *"0)2, and
a mean angle of attack a6 "303, they observed that the starting #ow retained the funda-
mental characteristics of static stall over a "xed airfoil. At this reduced frequency the
rotational motion of the airfoil produced only secondary e!ects on the vortex development
in the wake. At higher reduced frequencies of 1)0 or 2)0, on the other hand, the vortex
formation was primarily due to the #uid reaction to the transverse motion of the leading-
and trailing-edges of the ellipse. The e!ect of the Reynolds number was found to be much
less important than that of other parameters.

In this paper the early stages of #ow development over elliptic airfoils is simulated, and
the e!ects of several airfoil parameters on the #ow "eld are investigated.

2. SOLUTION METHOD

The governing equations for the incompressible #ow of a Newtonian #uid are
the Navier}Stokes and continuity equations, which for a two-dimensional #ow can be
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expressed in terms of the vorticity and stream-function as follows:

Lu
Lt

#(u '$)u"l +2u , (1)

+2t"!u, (2)

where u"(u, v) is the velocity vector, l is the kinematic viscosity, and u and t are the
vorticity and stream-function, respectively. Equation (2) is the Poisson equation for the
stream-function, which replaces the continuity equation.

In this study an elliptic cylinder oscillating in the pitch direction is considered, such that
the instantaneous angle of attack, a, is given by

a"a6 #Acos (Xt), (3)

where a6 is the mean angle of attack, A is the amplitude of the pitching oscillation (in rad),
and X"2n f, with f being the frequency of oscillation.

Following Chorin (1973), an &&operator-splitting'' method is applied to the governing
equations, and the following two equations are obtained, which are solved sequentially at
each time step:

Lu
Lt

"!(u '$)u, (4)

Lu
Lt

"l +2u. (5)

Convergence proofs for the application of the operator-splitting method to the
Navier}Stokes equations for unbounded #ows are given by Beale & Majda (1981) and Ying
(1990).

The vorticity "eld is discretized into a number of point vortices, and the time domain is
also discretized into small time steps. Equation (4) states that the total derivative of vorticity
is zero during &&convection'', or that the vorticity of a particle is constant as it is convected
with the local velocity. Hence, in order to satisfy the &&convection'' part of the governing
equations, the velocity "eld is obtained, and each `vortex particlea is convected with the
local velocity for the short period of the time step. To determine the velocity "eld equation
(2) is solved for the stream-function (given the vorticity "eld), and the velocity "eld is then
computed as the curl of the stream function. Next, the di!usion process is simulated by
solving equation (5) using a second-order ADI "nite di!erence scheme. The &&no-#ow''
boundary condition is satis"ed during the solution of the convection problem, and the
&&no-slip'' boundary condition is satis"ed by the creation of new vorticity on the body
surface during each time-step.

The boundary condition on the surface of the body is expressed as

u"v
b

on the surface of the pitching body ,

where u"(u, v) is the velocity of the #uid adjacent to the body surface, and v
b
is the local

velocity vector of the surface of the body. The velocity v
b

is given, at any point w on the
surface, by

v
b
"a5 3(w!P), (6)

where (w!P) is a &&position vector'' from the axis of rotation (P) to the point under
consideration (w), and a5 is the angular velocity vector, which, in this case, is perpendicular
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to the 2-D physical plane. The magnitude of the angular velocity is given by

a5 "!AX sin (X t). (7)

2.1. SOLUTION OF THE CONVECTION EQUATION

The velocity "eld is calculated by "rst solving the Poisson equation for the stream-function
through the so-called &&vortex-in-cell'' method, and then taking the curl of this computed
stream-function. Examples of the application of this scheme can be found in Smith
& Stansby (1988), Meneghini & Bearman (1993) and Akbari & Price (1997). In order to
more readily solve the Poisson equation, a conformal transformation is used to map a circle
in a z-plane onto an ellipse in a w-plane, with F: z(x, y)Pw(m, g). The Poisson equation is
then solved in the circle- or z-plane, rather than in the physical domain (w-plane).

The general form of this transformation is given by

w"F(z)"CAz#
(C!B)2

z B!PD e~*a#P, (8)

where z"x#i y is a point on or outside the circle in the z-plane, w"m#ig is the
corresponding point on or outside the transformed pro"le in the w-plane, B is a control
parameter to be explained later, and C, a and P are described below with the help of
Figure 1.

As can be seen in Figure 1, C is the location of the intersection of the circle in the z-plane
with the positive side of the x-axis. The center of the circle is located at the point (!e, d),P
is the location of the axis of rotation of the pro"le in the w-plane, and a is the angle of
rotation (angle of attack), positive in the clockwise direction. As mentioned above, B is
a control parameter that, along with the eccentricity of the circle, determines the shape of
the pro"le in the transformed plane (w-plane). Giving an eccentricity to the circle results in
a Joukowski airfoil. However, throughout the present study we set

e"d"0,

to obtain an elliptic pro"le in the transformed plane. In order to get di!erent values of
thickness ratio for the ellipse, the value of parameter B is changed.

Given equation (8), one can easily obtain F@(z), de"ned as F@(z),dF (z)/dz"m
x
#i g

x
(where m

x
and g

x
are the metrics of the transformation). Thus, the Jacobian J of the

transformation may be obtained easily, since the transformation is analytical, and hence,

J"m2
x
#g2

x
"DF@(z)D2. (9)

This Jacobian is necessary in the solution procedure, as discussed in the following.
Because the Poisson equation is solved in the circle}plane, correct boundary conditions

are required in this plane. Hence, a correspondence to equation (6) is required in the z-plane
(circle-plane). Given w"F(z), and using the chain rule, it can be shown that

w5 "F@(z) z5 , (10)

where w5 and z5 are, respectively, complex velocities in the w- and z-plane, corresponding to
each other, and de"ned as

w5 "u#iv , z5 "uL #ivL .

Equation (6) enables w5 to be determined on the surface, then using equation (10) and the
above de"nitions, the velocity components uL and vL in the z-plane can be obtained. Given



Figure 1. The Joukowski transformation of the z-plane (circle) into the w-plane (ellipse).
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uL and vL , the following equations are integrated to obtain the boundary conditions for the
stream-function on the circle in the z-plane:

uL "
1

J

Lt
Ly

, vL"!

1

J

Lt
Lx

. (11,12)

This integration is conducted along the body surface, starting from an arbitrary reference
point (e.g. the trailing-edge); thus, the inner boundary condition of the stream-function for
the solution of the Poisson equation is obtained.

The outer boundary condition of the stream-function is obtained as follows. If the outer
edge of the grid mesh is set far enough from the body, then it is reasonable to assume that
the #ow "eld is not altered there by the presence of the body, and hence

G
u";

=
v"0

at the far "eld,

or
w5 ";

=
at the far "eld. (13)

On the other hand, from equation (8), one can easily arrive at

lim
z?=

F@(z)"e~*a, (14)

and using equation (10) gives

lim
z?=

z5 ";
=

e*a";
=
(cos a#i sin a), (15)

and hence

G
uL ";

=
cos a

vL";
=
sin a

at the far "eld. (16)

Then, since

lim
z?=

J" lim
z?=

DF@(z)D2"1,

and using equations (11), (12), and (16), one can easily arrive at the following for the outer
boundary condition of the stream-function:

t"; (y cos a!x sin a)#const. at the far "eld. (17)

=



Figure 2. A typical polar cell containing a vortex.
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A polar grid is set up in the z-plane concentric with the circular boundary. The grid is
uniform in the circumferential direction and exponentially expanding in the radial direction.
Figure 2 shows a typical cell of such a grid, which in this case contains the jth point vortex
with strength C

j
located at x

j
. The ray and the arc (concentric with the grid) that pass

through x
j
cut the cell into four segments. The surface areas of these segments are denoted

as a
i
, i"1,2, 4, such that a

i
corresponds to the segment on the opposite side of corner i, as

shown in the Figure 2.
The vorticity due to the jth vortex is now distributed onto the four surrounding nodes as

follows:

u
i
"

a
i

(a
505!-

)2
C
j
, i"1,2, 4, (18)

where a
505!-

is the total area of the cell. Note that a uniform distribution of vorticity (C
j
/a

505!-
)

over the cell due to the jth vortex has been assumed. All other vortices are interpolated onto
the grid in a similar manner, and, due to the linearity of the problem, the total vorticity at
a node is simply the sum of the contributions from the individual vortices.

In the present analytical scheme, which involves the transformation of the physical
boundary onto a circle, the surface areas of the cell segments should be modi"ed as follows:

a@
i
"a

i
J (x6

i
), i"1,2, 4, (19)

where a@
i

is the &&corrected'' surface area, a
i

is the surface area of the segment in the
transformed (circle) plane, and x6

i
is the location of the centroid of the ith segment.

Now, given this discretized vorticity "eld and the boundary conditions of the stream-
function on both the inner and outer edges of the mesh, the Poisson equation can be solved
in the z-plane (circle-plane). Details of the fast Poisson solution scheme used in this study
(the cyclic reduction method) are given by Swarztrauber & Sweet (1975), and for the sake of
brevity are not presented here.

Given the stream-function, the velocity "eld u is calculated, and the vortex positions are
updated as

xk`1
j

"xk
j
#u(xk

j
, t

k
)*t (20)

where xk
j
is the position of the jth vortex at time t

k
, and xk`1

j
is its position at time t

k`1
due

to the &&convection'' part of the problem.
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2.2. THE NO-SLIP BOUNDARY CONDITION

The no-slip boundary condition is satis"ed by creating vortices at the solid boundary, such
that the velocity "eld induced by these vortices cancels the tangential component of velocity
along the boundary.

At the beginning of a time step the velocity "eld is calculated through the vortex-in-cell
method, as explained in the previous section. (Note that the e!ect of viscosity is not
considered during this velocity "eld calculation.) Thus, the tangential velocity component
along the body surface is obtained. If the velocity component long the surface at node i is uqi ,
and the length of the ith panel on the surface by s

i
, a number of vortices with a total

circulation (strength) of

(C
i
)
505!-

"!uqisi (21)

is created on panel i in order to cancel out the tangential velocity, uqi. This imitates the
physical process of vorticity generation on a solid boundary in a viscous #ow. The total
circulation (C

i
)
505!-

is divided equally between n point vortices located at node i, such that the
strength of each of them, C

j
, does not exceed a given maximum value, C

.!9
. This increases

the number of vortices in the #ow, resulting in a smoother vorticity "eld.
Note that although the new vortices are created on the surface, they will be &&pushed'' into

the interior of the #ow "eld through the action of di!usion. (Ideally, after the creation of
new vorticity on the body surface the velocity there will vanish, thus &&convection''will have
no contribution in this &&push''.)

After the creation of new vorticity the velocity "eld is once again calculated for the
purpose of &&convecting'' the vorticity "eld. Hence, during the &&convection'' stage of the
solution procedure both the no-slip and the no-#ow boundary conditions are satis"ed. In
the next time-step, the vortex positions and strengths will change due to &&convection'' and
&&di!usion'', and thus, in general, the tangential velocity on the solid boundary will no longer
be zero. Therefore, the same process is repeated, and new vorticity is created.

2.3. SOLUTION OF THE DIFFUSION EQUATION

To solve the di!usion equation it is "rst transformed into the z-plane (circle-plane). The
vorticity is then distributed onto the same grid as that used for the solution of the Poisson
equation, using the same bilinear interpolation scheme. An alternating-direction-implicit
(ADI) "nite-di!erence scheme is used to solve the transformed di!usion equation. A de-
tailed description of this scheme can be found in Akbari (1999), and for the sake of brevity is
not given here.

Obviously, the nodal vorticity distributions before and after the solution of the di!usion
equation are di!erent. The nodal vorticity distribution after the di!usion process has to be
interpolated back onto the point vortices in the "eld. Suppose that, during the distribution
of the vorticity onto the grid, the jth vortex contributed an amount of vorticity to node
p given by

-p,k
j

"

a@
p

(a@2
505!-

)
j

Ck
j
, (22)

where Ck
j

is the strength of the jth vortex before the di!usion process (at time t
k
), a@

p
is the

corrected surface area of the segment (of the cell) that corresponds to node p, and (a@
505!-

)
j
is

the total corrected surface area of the cell containing the jth vortex. Also suppose that at the
end of the vorticity distribution the total vorticity at node p is uk. Now, if after solving the
p
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di!usion equation (at time t
k`1

) the vorticity at node p is uk`1
p

, then the contribution to the
jth vortex from node p is

-p,k`1
j

"

uk`1
p
uk

p

- p,k
j

. (23)

This is the contribution to the jth vortex from node p only. The total strength of this vortex
after the di!usion process will be the sum of its contributions from all four surrounding
nodes,

Ck`1
j

"A
4
+
n/1

- n,k`1
j B(a@

505!-
)
j
. (24)

After distributing the nodal vorticity among the existing vortices, if any node still has any
remaining vorticity, new vortices are created at that node with the total strength of

C
505!-

"

(uk`1
p

)
-%&507%3

a@
505!-

, (25)

where, (uk`1
p

)
-%&507%3

is the amount of the remaining vorticity at node p, and aN @
505!-

is the
average corrected surface area of the four surrounding cells. The condition DC

j
D4C

.!9
applies here in the same manner as applied to the solution of the convection equation, thus,
if DC

505!-
D'C

.!9
more than one vortex is created.

3. FORCE CALCULATION

The total #uid force on a body is due to the pressure and shear stress distributions on its
surface. The pressure is calculated by integrating along h-constant curves in the z-plane (or
along the corresponding path in the w-plane) starting from the outer edge of the grid, where
the pressure is assumed to be zero, to the surface of the body.

Along a h-constant curve, we have

dp"
Lp

Lr
drKh~#0/45.

. (26)

The term Lp/Lr is obtained from the Navier}Stokes equations, as discussed by Akbari
(1999).

The shear stress on a solid boundary in a Newtonian #uid is given by

q"!k
Lu

t
Ln

,

where q is the shear stress, k is the dynamic viscosity, u
t
is the velocity component tangent to

the surface, and n is the normal direction to the surface. The term Lu
t
/Ln is transformed

using the transformation E: wPz, to give

Lu
t

Ln
P

LuL h
Lr

. (27)

Hence, the shear stress at any point on the body surface is given by

q"!k
LuL h
Lr

. (28)

A "nite-di!erence scheme is used to approximate the above equation.
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Given the pressure and shear stress distributions, the lift and drag forces, F
l
and F

d
, can

easily be obtained, and expressed in nondimensional forms as C
l
"F

l
/(1
2
o;2

=
c) and

C
d
"F

d
/(1
2
o;2

=
c), where, ;

=
is the free-stream velocity, o is the #uid density, and c is the

chord length of the body, which in the case of an ellipse is the length of its major axis.

4. RESULTS AND DISCUSSION

The starting yow over pitching ellipses is studied for Re"3000, and the e!ects of some
parameters on the #ow "eld are investigated. The boundary layer and the wake of the airfoil
are not considered to be turbulent at this Reynolds number [e.g. Ohmi et al. (1990)]. In all
the simulations presented a time-step of Dt"0)01, and a 300]300 grid are used. It was
checked that numerical convergence was achieved using these parameters. For example,
using a "ner grid of 400]400 resulted in a very similar time variation of force coe$cients,
with only a 4% di!erence from that obtained using the 300]300 grid. Also, decreasing the
time-step to Dt"0)0075 had virtually no e!ect on the #ow "eld or the force coe$cients.

To demonstrate the accuracy of the present numerical scheme, the #ow over a stationary
ellipse with t/c"0)1 at di!erent angles of attack is considered. The simulation results for
a "xed ellipse at a6 "103 are shown in Figure 3 in terms of vorticity contours. In this and all
similar "gures, positive vorticity is shown in white and negative vorticity in black, the gray
areas represents (almost) zero vorticity.

As seen in Figure 3, the #ow remains attached to the surface over most of the upper
surface and the entire lower surface of the ellipse. The release of the starting vortex occurs
during t*,t;

=
/c41)5, as shown in Figure 3(a,b) (where here t is time in seconds, and t* is

the dimensionless time). Then, a tiny separation-reattachment bubble is formed periodically
at the trailing-edge, that leads to the formation and release of counter-rotating vortices from
Figure 3. Vorticity contour plots at several instants of time for a "xed elliptic cylinder; t/c"0)1, a6 "103 and
Re"3000.



Figure 4. Time histories of the force coe$cients for a "xed elliptic cylinder; t/c"0)1, Re"3000: (a) a6 "53, (b)
a6 "103.
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the trailing-edge; see Figure 3(c-e). However, during the entire simulation the #ow remains
attached to the body surface, and no sign of #ow separation is observed.

As shown in Figure 4, the drag coe$cient (C
d
) of the ellipse reaches steady state values of

about 0)018 and 0)062 for a6 "5 and 103, and the lift coe$cient (C
l
) approaches values of

0)34 and 0)69, respectively. These simulations suggest LC
l
/La+1)28n for the attached #ow

over an ellipse with t/c"0)1.
When the angle of attack is increased to a6 "303, however, signi"cant changes occur in

the #ow "eld compared the previous case, as seen in Figure 5. Shortly after the impulsive
start of the #ow, at t*"0)5, a leading-edge vortex starts to form (Figure 5(a)). As this vortex
moves along the upper surface, a counter-rotating recirculation zone forms on the body-
surface beneath the leading-edge vortex; see Figure 5(b,c). Starting at time t*"3)5, the
#ow on the lower surface rolls up at the trailing-edge, and forms a vortex that interacts
with the leading-edge vortex, as shown in Figure 5(d,e). Vortex shedding from the
upper surface and the trailing-edge of the ellipse continues as the simulation progresses; see
Figure 5(f,g).

The force coe$cients for a6 "303 demonstrate an unsteady behaviour, as shown in
Figure 6. Both the lift and drag coe$cients are considerably higher than for previous cases
at lower angles of attack, especially the drag coe$cient which increased dramatically, by
one order of magnitude. Also shown in Figure 6 are the numerical results of Nair
& Sengupta (1997) for the same conditions, where similar large values of force coe$cients
are predicted. However, the two sets of results show very di!erent time histories. As
mentioned previously, the present simulation shows that the #ow separates from the ellipse
shortly after the start of the #ow, followed by a periodic vortex shedding from both the



Figure 5. Vorticity contour plots at several instants of time for a "xed elliptic cylinder; t/c"0)1, a6 "303 and
Re"3000.

Figure 6. Time histories of the force coe$cients C
l
(*}, f) and C

d
(- - -, L) for a "xed elliptic cylinder; t/c"0)1,

a6 "303 and Re"3000; *}, - - -: present study; f, L: numerical results due to Nair & Sengupta (1997).
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upper surface and the trailing-edge of the ellipse. The force coe$cients obtained from
the present simulation demonstrate a periodic behaviour that is synchronized with the
#ow development and vortex shedding. This is not observed in the numerical results
of Nair & Sengupt (1997), which do not seem to have reached a periodic behaviour
by t*"20.

In the following, the pitching oscillations of an ellipse in a steady cross-#ow are
considered, and the e!ects of di!erent parameters on the #ow "eld are investigated.

4.1. EFFECT OF REDUCED FREQUENCY

Computational results for the "rst two cycles of oscillation are presented in Figure 7, in
terms of the vorticity contour plots, for a 10% thick ellipse oscillating with f *"0)2. Results
are shown at di!erent instants of time up to t*"10. Also indicated for each part of the
"gure is the ratio t*/¹*, where ¹* is the period of the forced oscillation. Figure 7(a) shows
that the #ow remains attached to the airfoil up to t*"0)5 after the impulsive start of the
#ow. However, at t*"1)0 (Figure 7(b)) the "rst signs of a separated #ow appear near the
leading-edge. This separation bubble develops into a leading-edge vortex, that grows in
both size and strength as the body reaches its maximum angle of incidence (Figure 7(c)).
Meanwhile, a chain of small and opposite-sense vortices are continuously shed from the
trailing-edge.

In the downstroke half of the "rst cycle of oscillation the large-scale leading-edge vortex
continues to slowly detach from the airfoil surface and convects into the wake, while two
smaller vortices develop at the leading-edge; see Figure 7(d,e). At the same time the
trailing-edge continues to shed vortices. During the second cycle of oscillation, shown in
Figure 7(f}j), a process of vortex shedding from the leading- and trailing-edges of the ellipse,
similar to that in the "rst oscillation cycle, is observed. This is readily seen by comparing
parts (c) to (e) of Figure 7, which are for the "rst cycle of oscillation, with parts (h)}(j), which
are at exactly the same point in the second cycle of oscillation. Furthermore, a comparison
of this #ow "eld with that of a stationary ellipse (shown in Figure 5) suggests that the wake
structure for this low-frequency pitching ellipse is not di!erent fundamentally from that of
a stationary ellipse at high angles of attack. However, during the upstroke, the upward
motion of the leading-edge delays the #ow separation and favours a more stable #ow regime
near the leading-edge. Furthermore, the downward motion of the leading-edge promotes
separation of the main leading-edge vortex, and also induces the formation of smaller-scale
leading-edge vortices. During the same period, the upward motion of the trailing-edge
generates a string of negative-signed vortices in the wake.

Shown in Figure 8 are streamline sketches derived from visualization experiments on the
same ellipse and for the same conditions as the present case, taken from Ohmi et al. (1990).
The experiment was performed for two oscillation cycles of the airfoil. However, it was
reported that the #ow evolution of the second cycle was not very di!erent from that of the
"rst cycle, and that there were hardly any speci"c phenomena observable only in the second
cycle. These experimental streamlines should be compared with those obtained numerically,
shown in Figure 9. The agreement between the two sets of streamlines is very good for times
up to t*"3)0. In particular, the location and size of the leading- and trailing-edge vortices
obtained from the numerical simulation are predicted very closely to the experimental
visualization results. At t*"3)5 the location of the large-scale leading-edge vortex is
predicted somewhat o!-course compared to the experiments, and the di!erences between
the two #ow "elds continue to grow afterwards. However, during the entire simulation, the
overall structure of the wake is predicted reasonably close to that seen in the experimental
results.



Figure 7. Vorticity contour plots at several instants of time for a pitching elliptic cylinder; t/c"0)1, f *"0)2,
*a"153, a6 "303, a

0
"153, rotation axis at c/2 and Re"3000.



Figure 8. Experimental streamline plots for an ellipse; t/c"0)1, f *"0)2, Re"3000, a6 "303, *a"153 and
a
0
"153 [taken from Ohmi et al. (1990)]: (a) t*"0)5, (b) t*"1)0, (c) t*"1)5, (d) t*"2)0, (e) t*"2)5, (f) t*"3)0,

(g) t*"3)5, (h) t*"4)0.
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Increasing the nondimensional oscillation frequency to f *"1)0 produces a much more
complex #ow, as shown in Figure 10 for "ve complete cycles of oscillation. By the end of the
"rst half-cycle of oscillation the starting vortex has already been released from the trailing-
edge, and a separation bubble is forming at the leading-edge, as seen in Figure 10(a). At the
end of the "rst cycle, Figure 10(b), a leading-edge vortex has completely formed, and
a small-scale vortex has also formed at the trailing-edge during the downstroke. In the next
oscillation cycle a trailing-edge vortex is formed during the upstroke, and a leading-edge
vortex, with opposite sense, is formed during the downstroke; see Figure 10(c,d). In the third
oscillation cycle the presence of the two (merging) leading-edge vortices in the vicinity of the
trailing-edge suppresses the formation of a new trailing-edge vortex; this can be seen in
Figure 10(e,f). In the following cycles a new vortex is formed at the leading-edge during
every downstroke, while only a single trailing-edge vortex manages to form, as seen in
Figure 10(g}j).

It is observed that the periodic formation of both the large- and small-scale vortices are
controlled by the rotational motion of the leading- and trailing-edges at this higher
frequency, unlike in the previous case with a lower frequency. Furthermore, due to the
shorter oscillation period, the leading-edge vortices are not convected su$ciently far over
the upper surface before the next one is formed at the leading-edge; hence, the number of
vortices on the upper surface increases with time. On the other hand, the trailing-edge
maintains its periodic shedding of vortices, thus pushing the leading-edge vortices away
from the trailing-edge. This causes the vortices developed at the leading-edge to be shed
from the upper surface rather than from the trailing-edge. This, in turn, produces a di!erent
type of wake, where two streams of vortices are shed almost in parallel to each other from
the two edges.

The time histories of the force coe$cients for f *"1)0 are shown in Figure 11 for times up
to t*"13. The lift coe$cient reaches an almost periodic steady state after the end of the 4th
oscillation cycle, with a time period of about three times the oscillation period of the airfoil.
During one period of its #uctuation, the lift coe$cient has maximum and minimum values
of around 1)6 and 0)65, respectively. Its mean value, excluding the initial transient response
during t*44, is about 1. The drag coe$cient has a dominant period equal to that of the
airfoil oscillation; however, similar to the lift coe$cient, its overall cyclic period is about



Figure 9. Numerical streamline plots for an ellipse; t/c"0)1, f *"0)2, Re"3000, a6 "303, *a"153 and
a
0
"153: (a) t*"0)5, (b) t*"1)0, (c) t*"1)5, (d) t*"2)0, (e) t*"2)5, (f) t*"3)0, (g) t*"3)5, (h) t*"4)0.

Figure 11. Time histories of the force coe$cients for a pitching elliptic cylinder; t/c"0)1, f *"1)0, *a"153,
a6 "303, a

0
"153, rotation axis at c/2 and Re"3000.
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three times the airfoil oscillation period. This e!ect can be observed by comparing the drag
coe$cient response for 44t*47 with those for 74t*410 and 104t*413. The
maximum and minimum values for the drag coe$cient in one period of its #uctuation are
1)36 and 0)27, respectively. Also, the mean value of the drag coe$cient, excluding the
transient response, is about 0)75.

Increasing the frequency to f *"2)0 produces the results presented in Figure 12, where 10
oscillation cycles are completed during the t*"5)0 simulation time. Each part of the "gure
shows the #ow "eld at the end of either a downstroke or an upstroke during the last "ve
cycles of oscillation. Figure 12(a}d) shows that during each oscillation cycle two counter-
rotating vortices are generated at the trailing-edge, and a positive vortex is formed at the
leading-edge. However, the two counter-rotating vortices from the trailing-edge di!use into
each other as they move downstream.

As time increases, the formation of vortices from the trailing-edge continues almost
regularly up to the 8th oscillation cycle [as seen in Figure 12(b}f)], while the leading-edge



Figure 10. Vorticity contour plots at several instants of time for a pitching elliptic cylinder; t/c"0)1, f *"1)0,
*a"153, a6 "303, a

0
"153, rotation axis at c/2 and Re"3000.



Figure 12. Vorticity contour plots at several instants of time for a pitching elliptic cylinder; t/c"0)1, f *"2)0,
*a"153, a6 "303, a

0
"153, rotation axis at c/2 and Re"3000.



Figure 13. Experimental streamline plots for an ellipse; t/c"0)1, f *"2)0, Re"3000, a6 "303, *a"153 and
a
0
"153 [taken from Ohmi et al. (1990)]: (a) t*"0)5, (b) t*"1)0, (c) t*"1)5, (d) t*"2)0, (e) t*"2)5, (f) t*"3)0,

(g) t*"3)5, (h) t*"4)0.
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vortices continue to interact with each other, and form a large-scale vortex on the upper
surface of the body. The strength of this large-scale leading-edge vortex is large enough, so
that when it moves close to the trailing edge it suppresses the regular formation of the
trailing-edge vortices; see Figure 12(f}j). In the last two oscillation cycles, shown in
Figure 12(f}j), a vortex forms at the leading-edge, while the vortices from the trailing-edge
are trapped by the large-scale leading-edge vortex.

In this case, similar to the previous case with f *"1, the periodic formation of vortices
and the wake structure are dominated by the pitching motion of the airfoil. At this higher
frequency, however, alternate vortices are generated at the trailing-edge during both the
upstroke and downstroke. Furthermore, the formation frequency of small-scale leading-
edge vortices is so high that they hardly move before the next one coalesces with them,
forming a single large-scale leading-edge vortex during t*45.

The experimental #ow visualization results for this case ( f *"2), taken from Ohmi et al.
(1990), are shown in Figure 13 and the corresponding numerical streamline plots are shown
in Figure 14. Each part of the "gures shows the #ow "eld at the end of an oscillation cycle.
As seen in parts (a) and (b) of the "gures, the numerical simulation predicts the #ow "eld
quite accurately up to the end of the second cycle. At the end of the third oscillation cycle,
part (c) of the "gures, the vortex on the airfoil surface is predicted to be a little #atter than
that seen in the #ow visualization results; but the size and location of the vortices in the #ow
"elds are still very comparable. As time increases, the di!erences between the simulation
and experiments grow, however, qualitatively the comparison remains reasonably good.
For example, at the end of the 8th oscillation cycle the numerical simulation predicts a large
vortex structure on the airfoil surface, and a small vortex in the wake just below the
trailing-edge (see Figure 14(b)); this is very similar to the corresponding visualization results,
shown in Figure 13(h).

4.2. EFFECT OF MEAN ANGLE OF ATTACK

The results of Figure 15 show the vorticity contours when the mean angle of attack is set at
a6 "03, and the body oscillates between #153 and !153, starting from the positive angle,
with a reduced frequency of f *"1)0. These conditions are identical to those for the results



Figure 14. Numerical streamline plots for an ellipse; t/c"0)1, f *"2)0, Re"3000, a6 "303, *a"153 and
a
0
"153: (a) t*"0)5, (b) t*"1)0, (c) t*"1)5, (d) t*"2)0, (e) t*"2)5, (f) t*"3)0, (g) t*"3)5, (h) t*"4)0.
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shown in Figure 10, except for the mean incidence. The #ow "eld at the end of the "rst
downstroke, when a"!153, is shown in Figure 15(a), indicating that the starting vortex
has been released, and two co-rotating vortices have formed at the leading- and trailing-
edges. In the upstroke of the same cycle, the leading-edge vortex travels along the upper
surface, and a counter-rotating vortex forms on the lower side of the leading-edge; mean-
while, a new vortex forms at the trailing-edge from its lower side, see Figure 15(b). Figure
15(c) shows the #ow "eld at the end of the 2nd downstroke, where two co-rotating vortices
have formed on the upper surface at the leading- and trailing-edges.

The formation of a pair of co-rotating vortices from the lower side of the leading- and
trailing-edges during every upstroke, and another pair of vortices, with opposite sense, from
the upper side during every downstroke continues in the following cycles, as seen in
Figure 15(e}j). The vortices generated at the leading-edge travel along the surface of the
body, and are shed from the trailing-edge one oscillation cycle later. However, before
the vortex can be completely shed, the pitching direction of the body reverses, and the
remainder of the vortex is discharged from the trailing-edge 3/4 of a cycle later when
the body is almost at a"03. Hence, there is only a 1/4 of an oscillation cycle time di!erence
between the shedding of a vortex and the next co-rotating vortex from the same side of the
body, as seen in Figure 15(g}i). This regular vortex shedding from the trailing-edge forms an
organized vortex street in the wake of the body. The vortex shedding is fully controlled by
the oscillation in this case, as leading- and trailing-edge vortices are regularly shed during
every cycle of oscillation.

The wake structure for this angle of attack is fundamentally di!erent from that presented
in previous cases. However, it should be noted that the airfoil oscillates between moderate
angles of attack in this case, as opposed to the previous cases where very high angles of
attack were considered. Nevertheless, this demonstrates that the mean angle of attack has
a major e!ect on the #ow "eld, even though other parameters, such as the angular
amplitude of oscillation, also a!ect the #ow "eld.

The time histories of the force coe$cients for a6 "03 are shown in Figure 16. The drag
coe$cient shows a well-de"ned periodic behaviour immediately after the impulsive start of
the #ow, with a frequency equal to twice the oscillation frequency. The lift coe$cient also
shows a periodic behaviour; however, its frequency is equal to that of the forced oscillation.



Figure 15. Vorticity contour plots at several instants of time for a pitching elliptic cylinder; t/c"0)1, f *"1)0,
*a"153, a6 "03, a

0
"153, rotation axis at c/2 and Re"3000.
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Furthermore, the lift coe$cient lacks the (almost) sinusoidal pro"le seen in the drag
coe$cient response.

4.3. EFFECT OF PITCH-AXIS LOCATION

In all of the previous examples the pitch-axis was located at the mid-chord. Moving the
pitch-axis to the quarter-chord point produces the vorticity contours shown in Figure 17.



Figure 16. The force coe$cients for a pitching elliptic cylinder; t/c"0)1, f *"1)0, *a"153, a6 "03, a
0
"153,

rotation axis at c/2 and Re"3000: (a) time histories, (b) traces versus angle of attack.

774 M. H. AKBARI AND S. J. PRICE
At t*"0)5, Figure 17(a), the #ow "eld is very similar to that with pitch-axis at the
mid-chord at the same instant of time, shown in Figure 10(a), except that both the
leading-edge separation bubble and the starting vortex seem to be stronger in the present
case. This is due to a lower rate of ascent of the leading-edge, and a higher rate of descent of
the trailing-edge in the present case compared with the simulations presented in Figure 10.
Note that an upward motion of the leading-edge favours a more stable #ow at high angles
of attack, and delays #ow separation.

A leading-edge vortex is formed during every downstroke, as seen in Figure 17(b,d,f,h,j).
However, the leading-edge vortices travel a longer distance on the upper surface during the
next upstroke than when the pitch-axis is at the mid-chord (cf. Figures 10(c) and 17(c)); this
is due to the higher suction caused by the rapidly descending trailing-edge when the
pitch-axis is at the quarter-chord. Moreover, not only trailing-edge vortices are formed
during every upstroke, but also smaller-scale vortices are formed during some downstrokes
on the lower surface near the trailing-edge, see Figure 17(b,d,h).

The main e!ect of moving the pitch-axis to the quarter-chord is that both the leading-
and trailing-edge vortices are stronger than those with the pitch-axis at the mid-chord. Also,
coalescence of the leading-edge vortices occurs earlier in this case due to higher travelling
speed of the vortices on the upper surface. This changes the details of the #ow "eld, and
leads to a more unstable and complex wake structure. However, the overall features of the
wake pattern are very similar for the two positions of the pitch-axis.

4.4. EFFECT OF THICKNESS RATIO

Increasing the thickness ratio to t/c"0)25 from t/c"0)1, as considered in the previous
cases, produces results as shown in Figure 18. A leading-edge vortex is formed during every
downstroke, Figure 18(b,d,f,h,j). However, trailing-edge vortices are not formed in as
regular a manner as with t/c"0)1. The formation of a trailing-edge vortex can be seen
during the 2nd oscillation cycle, Figure 18(c,d). But, the next trailing-edge vortex is formed
during the period of 2)5(t*(3)5, as shown in Figure 18(e}g). The slow convection of this
vortex in the wake can be followed in the rest of the simulation, Figure 18(h}j). It is observed
that in this case pairs of leading-edge vortices merge and form a large-scale vortex that
dominates the near-wake for some time.

The formation of leading-edge vortices for t/c"0)25 is just as regular as when t/c"0)1, i.e.,
one during every downstroke. However, trailing-edge vortices are not formed as regularly as
in the previous cases. This phenomenon can be attributed to the lower curvature of the
trailing-edge when t/c"0)25. Due to the lower curvature, the rolling up of the #ow on the
lower surface of the body during the upstrokes is not as intense as for the thinner ellipse;



Figure 17. Vorticity contour plots at several instants of time for a pitching elliptic cylinder; t/c"0)1, f *"1)0,
*a"153, a6 "303, a

0
"153, rotation axis at c/4 and Re"3000.



Figure 18. Vorticity contour plots at several instants of time for a pitching elliptic cylinder; t/c"0)25, f *"1)0,
*a"153, a6 "303, a

0
"153, rotation axis at c/2 and Re"3000.
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hence, there is a weaker formation of the trailing-edge vortices. The wake structure for
t/c"0)25 is less complex and more organized than for the thinner ellipse. It is mainly
composed of a large-scale leading-edge vortex (formed by the coalescence of two original
leading-edge vortices), and the trailing-edge vortices that are shed once during every two
oscillation cycles. Hence, there is a well-balanced vortex street downstream of the ellipse.
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5. CONCLUSIONS

The #ow "eld around elliptic airfoils in pitching oscillations has been simulated, and the
e!ects of several parameters on the #ow structure examined. These parameters included the
frequency of oscillation, mean angle of attack, location of the pitch-axis and the thickness
ratio.

It was observed that the frequency of oscillation has a signi"cant e!ect on the #ow
structure. At the lowest reduced frequency considered, f *"0)2, the wake structure did not
show any signi"cat di!erence compared to that for a stationary ellipse at high angles of
attack. The minor di!erences noted were due to the ascending motion of the leading-edge
which delayed the #ow separation, and the periodic motion of the trailing-edge which
caused the formation of trailing-edge vortices. At a higher reduced frequency of f *"1)0, the
periodic formation of both the leading- and trailing-edge vortices was controlled by the
rotational motion of the airfoil. Also, because of the shedding of the leading-edge vortices
from the upper surface (rather than the trailing-edge) a di!erent type of wake structure was
observed. At the highest reduced frequency considered in these simulations, f *"2)0, the
formation of vortices was controlled by the pitching oscillation of the airfoil, similar to the
behaviour with f *"1)0. Furthermore, in this case, alternate vortices were observed to form
at the trailing-edge during both the upstroke and downstroke of the ellipse. The numerical
results for these cases were in good agreement with corresponding experimental #ow-
visualization results.

It was observed that the mean angle of attack has a signi"cant e!ect on both the vortex
formation mode and the wake pattern. For example, with a mean angle of attack of a6 "03
an organized vortex street was observed in the wake of the airfoil, as opposed to a wide,
complex wake structure seen for the same pitching airfoil with a6 "303. Well-de"ned
periodic force coe$cients were obtained with a6 "03.

Moving the pitch-axis from the mid-chord to the quarter-chord caused the formation of
stronger leading- and trailing-edge vortices, which lead to a more unsteady and complex
wake structure. However, the fundamental characteristics of the #ow "eld remained the
same as those obtained with the pitching axis at the mid-chord.

The #ow around a thicker ellipse with t/c"0)25, rather than with t/c"0)1, was also
simulated. It was observed that, similar to previous cases, a leading-edge vortex was formed
during every downstroke of the ellipse. However, trailing-edge vortices did not form as
regularly as those over the thinner ellipse. This was attributed to the lower curvature at the
trailing-edge of the thicker ellipse. As a result of the coalescence of every two leading-edge
vortices, and the formation of trailing-edge vortices during every two cycles, a di!erent type
of wake pattern was observed in this case.
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